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Abstract
The Buck–Sukumar model, which describes an assembly of A identical two-
level atoms in interaction with a monochromatic radiation field, is investigated
using su(2)⊗su(1, 1) coherent states, in the framework of conventional mean-
field many-body approaches. In particular, the super-radiant phase transition
is studied. We find that results based on the mean-field method compare
favorably with exact results. We also find that the results are much improved
if the constant of motion of the model is implemented exactly, with the help
of appropriate projection techniques, instead of being implemented only in the
average. Since the Hamiltonian of the Buck–Sukumar model is unbounded
from below, i.e., it lacks a ground state, a stabilized version of the model is also
studied.

PACS numbers: 03.65.Fd, 42.50.−p, 32.80.−t

1. Introduction

The one photon Jaynes–Cummings (JC) model [1] is an important model of quantum optics
and quantum electronics. It describes a two-level atom in interaction with a monochromatic
radiation field. The Hamiltonian of the model is given by

H0 = ωf a†a + ωasz + λ(s+a + s−a†), (1)

where sz, s± are operators satisfying the commutation relations of the su(2) algebra,
[sz, s±] = ±s± and [s+, s−] = 2sz, and a†, a are respectively creation and destruction operators
of the photon, satisfying the boson commutation relation [a, a†] = 1, ωf is the energy of each
photon, ωa is the energy splitting between the relevant atomic states and λ is a real coupling
constant. The operators sz, s± are 2 × 2 matrices related in the standard way to the Pauli spin
matrices. This is an exactly solvable model [2]. Despite its simple form, it shows important
quantum features as, for instance, the collapse and revival of atomic inversion [3] and the
squeezing of the radiation field [4]. This model illustrates important physical effects such as
the behavior of the 85Rb atom micromaser [5], the 138Ba atom microlaser [6] and spin polarized
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neutrons subject to a magnetic field [7]. In [3], Eberly et al studied the average value of the
atomic excitation energy, 〈sz(t)〉, in the vicinity of a resonance (ωf = ωa). In [8], Buck and
Sukumar modified the interaction term in Hamiltonian (1) in such a way that the Heisenberg
equations of motion could be solved exactly and the expression of 〈sz(t)〉 could be evaluated
in closed form. They proposed the Hamiltonian

H = ωa†a + ωsz + λ(s+a
√

a†a + s−
√

a†aa†), (2)

where ω = ωa = ωf . In [9–11], analogous models of interacting matter-radiation, involving
the description of the electromagnetic field in terms of similarly deformed bosons, have been
investigated. These models are relevant for the description of the phenomenon of super-
radiance, first considered by Dicke [12].

The Buck–Sukumar (BS) model may be generalized for the case of an assembly of A

identical two-level atoms. It is enough to substitute into (2) the operators sz, s± by the total
spin operators

Sz =
A∑

j=1

s(j)
z , S± =

A∑

j=1

s
(j)
± , (3)

where s
(j)
z , s

(j)
± are operators associated with the j th atom. The so-called Dicke model [12] is

obtained from the JC model by the same procedure. It has been shown that coherent states [13]
are good choices for trial states, in variational approaches to the description of the behavior of
a great variety of quantum systems. For example, they have been recently used to describe the
ground-state and RPA energies of the two-level pairing model and the Lipkin model [14–16].
In the same spirit, we use now coherent states to investigate some properties of the BS model.

2. The model

For simplicity, we restrict our attention to the following form of the Hamiltonian of the BS
model:

H = a†a + Sz + λ(S+R− + S−R+), (4)

where Sz, S± are given by (3) and R− = a
√

a†a,R+ =
√

a†aa†. In (4), we have taken ω = 1.
In the following, all energies will be given in units of ω. The operators Sz, S± satisfy the
commutation relations of the su(2) algebra,

[Sz, S±] = ±S±, [S+, S−] = 2Sz.

The Casimir operator S2 = S∓S± + S2
z ± Sz is a constant of motion. Its eigenvalues S(S + 1)

characterize the assembly of atoms described by H, in the sense that 2S represents the number
of assembled atoms. Since the spectrum of H does not depend on the sign of the coupling
constant, we assume that λ � 0. The operators R± and R0 = (a†a + 1/2) satisfy the
commutation relations of the su(1, 1) algebra,

[R0, R±] = ±R±, [R+, R−] = −2R0. (5)

The corresponding Casimir operator reads

Q = −R∓R± + R2
0 ± R0. (6)

In general, its eigenvalues are of the form k(k − 1), k ∈ C. However, in the boson realization
under consideration, Q = −1/4, so that k = 1/2.
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The Hilbert space of the model is H = HF ⊗ HB , where HF and HB are, respectively,
the fermion (assembly of two-level atoms) and boson (photon system) Hilbert subspaces. An
orthonormal basis of H is formed by the kets

|S,m〉 ⊗ |n〉 (7)

where |S,m〉 are (normalized) eigenstates of S2 and Sz, i.e., S2|S,m〉 = S(S + 1)|S,m〉,
Sz|S,m〉 = m|S,m〉 and |n〉 are (normalized) eigenstates of the boson number operator,
a†a|n〉 = n|n〉, with S = 0, 1/2, 1, 3/2, . . . , m = −S,−S + 1, . . . , S and n = 0, 1, 2, . . . .

The operator

C = a†a + Sz (8)

is a constant of motion, since [C, (S+R− + S−R+)] = 0. The eigenvalues of C, denoted by c,
are integers or half-integers. If S � 0 and c are integers or half-integers and c + S and n � 0
are integers satisfying c + S � n � c − S, the kets,

|S, c − n〉 ⊗ |n〉, (9)

are eigenvectors of C associated with the eigenvalue c. By H(S,c) we denote the subspace
spanned by these kets, for fixed S and c. Obviously, we must have c � −S. For c � S,H(S,c)

has dimension 2S + 1. If c < S the dimension is 2S + 1 + (c − S) = S + c + 1. By E
(S,c)
0

we denote the lowest eigenvalue of H for the specified S and c. Since the subspaces H(S,c)

are left invariant by the Hamiltonian and are finite dimensional, the determination of the exact
spectrum of the Hamiltonian is trivial.

We are interested in the eigenspace of S2 associated with the eigenvalue S(S + 1), which
is the direct sum of the subspaces H(S,c),

H(S) =
⊕

c

H(S,c), (10)

where it is implicit that c runs over the meaningful values.

3. Trial states

3.1. su(2) ⊗ su(1, 1) coherent states

We will investigate the ground-state properties and the critical behavior of our system using
suitable trial states. Since the Hamiltonian is expressed in terms of the generators of the su(2)

and su(1, 1) algebras, it is natural to consider the su(2) ⊗ su(1, 1) coherent states as the
desired trial states.

Let |0〉F ≡ |S,−S〉 ∈ HF , where S−|S,−S〉 = 0, Sz|S,−S〉 = −S|S,−S〉 and
|0〉B ≡ |0〉 ∈ HB where a|0〉 = 0. Our trial state will be, therefore, the coherent state

|ψ) = ezS+ eξR+ |0) ∈ H(S), z, ξ ∈ C, |ξ | < 1 (11)

where |0) = |0〉F ⊗ |0〉B is the global vacuum.
The relevant average values read

(ψ |Sz|ψ)

(ψ |ψ)
= S

|z|2 − 1

|z|2 + 1
,

(ψ |S+|ψ)

(ψ |ψ)
= (ψ |S−|ψ)

(ψ |ψ)

∗
= 2S

z∗

|z|2 + 1
, (12)

(ψ |a†a|ψ)

(ψ |ψ)
= |ξ |2

1 − |ξ |2 ,
(ψ |R+|ψ)

(ψ |ψ)
= (ψ |R−|ψ)

(ψ |ψ)

∗
= ξ ∗

1 − |ξ |2 . (13)

Thus, from (12) and (13), the energy expectation value in state |ψ) reads

E = (ψ |H |ψ)

(ψ |ψ)
= |ξ |2

1 − |ξ |2 + S
|z|2 − 1

|z|2 + 1
− 4Sλ

|z||ξ |
(|z|2 + 1)(1 − |ξ |2) . (14)
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Figure 1. The lowest energy for S = 5 and c = 10. The thin line is the exact result; the dashed
line is the minimum energy of the state |ψ); the minimum energy of the state |ψp) is represented
by a line which practically coincides with the exact result.

This expectation value has been optimized with respect to the phases of z and ξ by choosing
(arg z − arg ξ) = π .

Since the state |ψ) does not belong to the subspace H(S,c), we implement in the average
the conservation of C,

(ψ |a†a + Sz|ψ)

(ψ |ψ)
= |ξ |2

1 − |ξ |2 + S
|z|2 − 1

|z|2 + 1
= c. (15)

In figure 1, we compare the exact ground-state energy with its variational estimate for the case
S = 5 and c = 10. The agreement is rather good. In figure 1, the exact ground-state energy
appears slightly above its variational estimate, apparently contradicting the Ritz theorem. This
happens because some components of the state |ψ) lie outside the subspace H(S,c).

3.2. Projection on the physical subspace

In order to improve the description provided by the state |ψ) (equation (11)) we project it on
the subspace H(S,c). The projected state reads

|ψp) =
c+S∑

n=n0

ρn

n!(c + S − n)!
Sc+S−n

+ Rn
+|0), (16)

where ρ = ξ/z and n0 = Max((c − S), 0). For c � S, which happens when the number of
photons exceeds the number of atoms, we have

(ψp|S+R− + S−R+|ψp)

(ψp|ψp)
= 4S

(c + S)|ρ|3 + (c − S + 1)|ρ|
(1 + |ρ|2)2

cos(α), (17)

where α = arg ρ. Since (ψp|a†a + Sz|ψp) = c(ψp|ψp) the energy expectation value of |ψp)

reads

(ψp|H |ψp)

(ψp|ψp)
= c − 4Sλ

(c + S)|ρ|3 + (c − S + 1)|ρ|
(1 + |ρ|2)2

, (18)

after optimization with respect to α. In figure 1, the minimum of the estimated energy is
represented for S = 5 and c = 10. It almost coincides with the exact value, the difference
between both curves being undetectable. Also for c � S, the performance of the projected
state |ψp) is superior to that of the coherent state |ψ).
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Figure 2. E
(S,c)
0 as a function of c, for S = 5 and λ fixed. In (a), λ = 0.1 (normal phase). In (b),

λ = 0.1001 (super-radiant phase).

4. BS model completed

We have restricted our attention to states characterized by a specific value c of the constant of
motion C. When we relax this restriction and compare the properties of states characterized
by different values of c, for the same S, we find, with some surprise, that the energy has a
lower bound only if λ � 1/(2S). In this case, (ψ |H |ψ)/(ψ |ψ) � −S. Then, a ground state
exists such that E

(S,c)
0 = −S, which occurs for c = −S. If λ > 1/(2S), the Hamiltonian is

unbounded from below, which may be physically unacceptable. Then, there is no value of c
for which the energy is minimal. Increasing c indefinitely leads to an indefinite decrease of
the energy. In this sense, we say that the model is incomplete for λ > 1/(2S). As figure 2
shows, for a value of λ below 1/(2S), when c increases, the lowest energy value also increases.
This no longer happens for a value of λ above 1/(2S). Then, the lowest energy decreases
indefinitely when c increases after a certain critical value. This effect illustrates dramatically
the phase transition from the normal to the so-called super-radiant phase.

We stabilize the model by adding to the Hamiltonian a term quadratic in C. We now
consider the stabilized Hamiltonian

Hε = a†a + Sz + ε(a†a + Sz)
2 + λ(S+R− + S−R+), (19)

where ε is a positive real parameter, which is small enough so that the desirable physical
features of the original Hamiltonian are not destroyed. In the following, we will refer to
this Hamiltonian as the completed Buck–Sukumar (cBS) model. The original Hamiltonian
and the stabilized one have the same eigenstates, their eigenvalues being displaced by εc2.
The conclusions we draw for the stabilized Hamiltonian have, therefore, a counterpart in the
original one.

We investigate the behavior of the minimum energy of the stabilized Hamiltonian for a
given c, when c is varied. In figure 3(a), the case S = 5, ε = 0.01 and λ = 0.175 is presented.
The coupling constant is somewhat above the critical value and the minimum energy occurs
already for a rather high value of c. The performance of the projected state is remarkable.
Below the critical value, the minimum energy occurs for c = −S. An important aspect of the
BS model is the phase transition for λ = 1/(2S). In figure 3(b) the phase transition for the
cBS model is clearly exhibited, for ε = 0.01. The stabilizing term pushes the critical point
to a somewhat higher value of λ. When the value of ε decreases to 0, the critical value of λ

approaches 1/(2S).
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(b)(a)

Figure 3. Properties of the cBS model. (a) E
(S,c)
0 as a function of c for S = 5 and λ = 0.175,

(b) ground-state energy for S = 5. The thick line is the exact result, on which the estimate based
on the projected state |ψp) is superimposed. The thin line is the variational estimate based on the
coherent state |ψ).

Figure 4. Properties of the cBS model. Lowest energy for S = 5 and fixed values of c.
(a) For c = 10, the exact result and the minimum energy for the coherent state |ψ) are represented
by lines which practically coincide. (b) For c = 300, the upper line corresponds to the coherent
state |ψ) and the lower one to the exact result superimposed on the result for the projected state
|ψp); the discrepancy, due to fluctuations in the photon number, is noticeable. In both cases, the
performance of the projected state |ψp) is remarkable, the corresponding line being superimposed
on the exact one.

In figure 3(b), we also compare the estimated minimum energy based on the coherent state
|ψ) with the exact ground-state energy, for S = 5 and ε = 0.01. We see that the agreement
is excellent before the transition and reasonable after it. This happens because, within a
given subspace H(S,c), the performance of the coherent state |ψ) is very good, as shown in
figure 4(a), if c is not too high. However, it becomes gradually worse when c increases, and a
sizeable discrepancy is already noticeable in figure 4(b), due essentially to the fluctuations in
c which are present in the coherent state |ψ). Now, the ground state of the cBS model occurs
for a rather large value of c, for which the performance of |ψ) is reasonable but no longer
excellent. Nevertheless, this deficiency of |ψ) is corrected in the projected state |ψp), so that
the variational estimate of the ground-state energy based on this state is in very good agreement
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Figure 5. Properties of the cBS model: correlation energy and order parameter. (a) Ratio between
the correlation energy estimated, in the projection method, by Ef − Ep and the exact correlation
energy Ef − Eex; here, Ef is the ground-state energy estimated by the coherent state |ψ), Ep is
the ground-state energy estimated by the projected state |ψp) and Eex is the exact ground-state
energy. (b) Behavior of the number of photons 〈a†a〉, regarded as order parameter. The lower line,
in the super-radiant phase, refers to the coherent state |ψ), while the upper line represents the exact
values, on which the projected state |ψp) results are superimposed.

Figure 6. (a) Average value of Sz. (b) 	Sz = 〈S2
z 〉 − 〈Sz〉2.

with the exact result also in the super-radiant phase. The same applies to the estimates of the
lowest energy values for fixed S and c. In figure 5(a) we compare, for different values of the
coupling constant λ, the correlation energy estimated by the projection method as (Ef − Ep)

with the exact correlation energy (Ef − Eex), where Ef is the ground-state energy estimated
by the coherent state |ψ),Ep is the ground-state energy estimated by the projected state |ψp)

and Eex is the exact ground-state energy. The ratio of these quantities is 1.0, except in the
immediate vicinity of the critical point, where it is 0.948. In figure 5(b), the behavior of the
number of photons 〈a†a〉, regarded as order parameter, for different values of the coupling
constant λ, shows a first-order transition. The performance of the projected state, which leads
to results coinciding with the exact ones within three figures, is remarkable, the effect of
photon number quantization being clearly exhibited in both cases. In figure 6(a) we compare,
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for different values of the coupling constant λ, the average value of Sz for the coherent state
|ψ) (thin line), with the corresponding value estimated with the projected state |ψp) , which
appears superimposed on the exact value (thick line). In figure 6(b), we compare, for different
values of the coupling constant λ, the variance 	Sz = 〈

S2
z

〉 − 〈Sz〉2 for the coherent state |ψ)

(lower thin line), with the corresponding value estimated with the projected state |ψp) (upper
thin line), which almost coincides with the exact value (thick line). Note the remarkable
jumps, reflecting a first-order phase transition, at the super-radiance critical point.

As it has been observed already, we also note that the critical point predicted by the
projection method coincides with the exact critical point and lies slightly below the critical
point predicted by the coherent state |ψ).

5. Conclusions

The Buck–Sukumar model was investigated using su(2) ⊗ su(1, 1) coherent states, in the
framework of conventional mean-field many-body approaches. The super-radiant phase
transition was studied. We found that variational results obtained in the framework of mean-
field approaches compare favorably with exact results. We also found that the obtained results
are much improved if the constant of motion of the model is implemented exactly, with the
help of appropriate projection techniques, instead of being implemented only in the average.

In order to circumvent a drawback of the original BS model, which lacks a ground state,
that is, the spectrum of its Hamiltonian has the undesirable feature of being unbounded from
below, a stabilized version was proposed and studied, confirming that the investigated coherent
states provide a good description of the model.
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